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A B S T R A C T   

Purpose: Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease. In recent years, 
machine learning methods have been widely used on analysis of neuroimage for quantitative evaluation and 
computer-aided diagnosis of AD or prediction on the conversion from mild cognitive impairment (MCI) to AD. In 
this study, we aimed to develop a new deep learning method to detect or predict AD in an efficient way. 
Materials and methods: We proposed a densely connected convolution neural network with connection-wise 
attention mechanism to learn the multi-level features of brain MR images for AD classification. We used the 
densely connected neural network to extract multi-scale features from pre-processed images, and connection- 
wise attention mechanism was applied to combine connections among features from different layers to hierar-
chically transform the MR images into more compact high-level features. Furthermore, we extended the 
convolution operation to 3D to capture the spatial information of MRI. The features extracted from each 3D 
convolution layer were integrated with features from all preceding layers with different attention, and were 
finally used for classification. Our method was evaluated on the baseline MRI of 968 subjects from ADNI database 
to discriminate (1) AD versus healthy subjects, (2) MCI converters versus healthy subjects, and (3) MCI con-
verters versus non-converters. 
Results: The proposed method achieved 97.35% accuracy for distinguishing AD patients from healthy control, 
87.82% for MCI converters against healthy control, and 78.79% for MCI converters against non-converters. 
Compared with some neural networks and methods reported in recent studies, the classification performance 
of our proposed algorithm was among the top ranks and improved in discriminating MCI subjects who were in 
high risks of conversion to AD. 
Conclusions: Deep learning techniques provide a powerful tool to explore minute but intricate characteristics in 
MR images which may facilitate early diagnosis and prediction of AD.   

1. Introduction 

Alzheimer’s disease (AD) is a neurological degenerative disease. 
Clinically, it is characterized by memory impairment, visual spatial 
impairment and personality behavioral changes. Nowadays, at least 50 
million people are believed to be living with Alzheimer’s disease or 
other dementias [1]. Moreover, this number will continue to grow in the 
next two to three decades [2,3]. Mild cognitive impairment (MCI) is 
generally considered to be a transitional state from normal control (NC) 
to AD, and is often considered as a precursor of AD when it is associated 

with memory loss and poor judgment. Although the etiology of AD has 
not been completely known and there is no effective treatment for AD, so 
far, early detection of AD is of importance for prevention and treatment 
of the disease. However, early diagnosis is still challenging, especially 
the precise distinction between stable MCI subjects (who does not 
develop to AD) and MCI converters (who gradually develops to AD). 
Magnetic resonance image (MRI) provides a non-invasive and powerful 
tool to facilitate our understanding and evaluation of anatomical and 
functional brain changes related to AD. They are playing important roles 
in the routine clinical practice and also recognized as important 
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biomarkers for AD progression [4–6]. For decades, researchers have 
devoted their efforts to develop various approaches for early diagnosis of 
AD on individual basis, including both ordinary machine learning 
methods and deep learning networks. 

Many computer-aided systems have been developed using various 
machine learning methods to decode disease states from MR images 
[7–10]. These algorithms were trained to produce a desired output from 
a set of training data, such as features obtained from voxel intensity, 
tissue density or shape descriptor. These methods can be roughly 
divided into two categories in terms of the brain coverage for feature 
extraction: the whole brain based [6,11] and the region of interest (ROI) 
based [8,12,13]. Kloppel et al. [6] mapped the gray matter segment of 
the whole brain to a high dimensional space, where voxels were treated 
as coordinates and the value of each voxel was taken as intensity value. 
The subjects were then classified by using linear support vector machine 
(SVM). Long et al. [11] quantified the deformation vectors on the whole 
brain gray matter as image dissimilarity, then applied SVM for classifi-
cation. As the whole-brain methods may be computational expensive 
due to the high-dimensional features, methods focusing on regional 
features either chose one or more brain areas that were regarded as 
being relevant to AD or selected ROIs that were adapted to the specific 
cohorts by algorithm. The 3D volume and shape characteristics of hip-
pocampus, parahippocampal gyrus, and entorhinal cortex were 
commonly used features in ROI-based methods. Silveira et al. [12] 
separated the brain images into 116 anatomical ROIs, and the boosting 
classification was adopted for classification. Zhang et al. [8] proposed a 
multi-kernel SVM to ensemble the multi-modal features such as tissue 
volumes extracted from 93 ROIs. Gutman et al. [13] presented the first 
SVM classification study using the feature space of shape invariants of 
hippocampal surface. The shape invariants were based on rotationally 
invariant properties of spherical harmonics (SPH). The ROI-based 
methods were shown to be effective, but errors or feature variance 
may be induced by region delineation and thus affect classification 
results. 

Recently, the popular deep learning technologies have made great 
success in the field of computer vision. It is shown that deep neural 
networks could discover discriminative and complex patterns from 
sufficiently labelled data. From AlexNet to DenseNet, the model can 
further extract those intricate but useful information. The DenseNet 
which connects each layer to every other layer in a feed-forward fashion, 
alleviates the gradient vanishing problem, strengthens feature propa-
gation, encourages feature reuse, which improves the performance of 
classification. Researchers also extended the usage of deep learning 
technologies in AD detection. At the early stage, deep learning methods 
were mainly used for region segmentation or feature extraction followed 
by traditional machine learning algorithms such as SVM and bboosting. 
Liu et al. [14] proposed a method to learn deep convolutional features 
using both unsupervised and supervised learning for AD and MCI clas-
sification based on 2D MRI images. Suk et al. [10] proposed to use a 
stack sparse autoencoder for feature extraction along with SVM for 
classification. Li et al. [15] developed a deep learning framework based 
on three-dimensional convolutional neural network (CNN). The 3D CNN 
features were then combined with MRI gray matter density map and PET 
intensity values for multi-modal AD discrimination. Recently, deep 
neural networks have been applied to the throughout classification 
process. Payan et al. [16] constructed a 3D CNN model for both feature 
extraction and the following classification, where the 3D convolution 
layers were trained by sparse automatic encoder. Sarraf et al. [17] used 
the classic architecture LeNet-5, while Hosseini-Asl et al. [5] proposed to 
build a 3D convolutional autoencoder named 3D-CAES where the model 
was pre-trained to capture anatomical shape variations in structural 
brain MRI scans. 

Among recent advanced deep learning techniques, attention mech-
anism (AM) has shown to be a powerful tool and been an essential 
component of neural architectures in a large number of applications in 
natural language processing [18,19], image classification [20,21] and 

segmentation [22]. The basic idea of attention mechanism comes from 
visual attention in human vision system, which illustrates that human 
vision always focuses on selective parts of the whole visual screen, and 
learning process could be similar to selectively learn weights of interest. 
Xu et al. [18] first introduced visual attention into deep learning model 
for image captioning, where soft attention and hard attention were both 
proposed. Attention mechanism has also been applied in the field of 
medical imaging. Ypsilantis et al. [23] explored where to look in chest X- 
rays by using a recurrent attention model (RAM) based on recurrent 
neural network (RNN) and reinforcement learning. The model was 
shown to obtain 90.6% and 91.0% accuracy for the recognition of 
medical devices and enlarged hearts, respectively. Schlemper et al. [24] 
applied an attention-gated network to real-time automated scan plane 
detection for fetal ultrasound screening. They demonstrated that the 
network with attention modules led to better performance than general 
networks. 

Inspired by the success of deep learning methods and attention 
mechanisms in medical imaging areas, we proposed an improved 
convolution neural network for AD diagnosis and prediction with MR 
images. We first proposed the densely connected convolution neural 
network with connection-wise attention mechanism (short for ‘CAM- 
CNN’) to learn the multi-level features of MR brain images. To capture 
the 3D features from MR images, we used a 3D convolution on the classic 
DenseNet structure. A connection-wise attention mechanism was 
applied to integrate feature maps from different layers to hierarchically 
transform the MR image into more compact high-level features. 
Furthermore, we also extended the convolution operation to 3D to 
capture the spatial information of MRI. The features extracted from each 
3D convolution layer were interconnected with the features from all 
previous layers with different attention and were finally used for clas-
sification. The proposed model was verified on the data from the ADNI 
database for discrmination of AD and prediction of MCI conversion. 

2. Material and methods 

2.1. Data and processing 

Data in this paper were collected from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). 
ADNI was launched in 2003 by the National Institute on Aging (NIA), the 
National Institute of Biomedical Imaging and Bioengineering (NIBIB), 
and the Food and Drug Administration (FDA). It aims to investigate the 
role of using serial magnetic resonance imaging (MRI), Positron Emis-
sion Tomography (PET), and other biological markers, together with 
clinical and neuropsychological assessment in the diagnose of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD). In 
ADNI, the T1-weighted MR images were acquired sagittally using the 
volumetric 3D MPRAGE with 1.25 × 1.25 mm2 in-plane spatial resolu-
tion and 1.2 mm thick sagittal slices. Most of these images were obtained 
with 1.5 T scanners. More detailed information about MR acquisition 
procedures is available at the ADNI website. 

In this work, we used the T1-weighted MRI data from the baseline 
visits of 968 participants including 280 AD patients, 162 subjects who 
were diagnosed as MCI and had converted to AD within 18 months 
(short for ‘cMCI’), 251 subjects with MCI who had not developed to AD 
within 5 years (short for ‘ncMCI’), and 275 normal controls (NC) who 
remained cognitively normal within 3 years for evaluation. The de-
mographic and cognitive examination details of each group were shown 
in Table 1. 

A routine pre-processing procedure was applied to each image using 
the FSL software (https://fsl.fmrib.ox.ac.uk). Specifically, a non- 
parametric and non-uniform bias correction algorithm were used to 
correct the intensity inhomogeneity followed by an intensity normali-
zation step. The BET module was used to remove the skull. All processed 
images were aligned to the standard space using FLIRT. Finally, all the 
images were resampled to the size of 182× 218 × 182. 
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2.2. Image patch generation 

Image biomarkers of AD may be spatially associated with widespread 
areas in the brain. Such information may be ignored if the whole brain 
was considered as multiple 2D slices in 2D-CNN. Inspired by the great 
success of densely connected neural network in image classification, the 
proposed method extended the 2D convolution layers of DenseNet to 3D 
convolution layers to capture the unitary features of AD from MRI. 
However, the 3D model has brought new problems that may affect the 
experimental computation. Firstly, considering the brain in a 3D scope 
increased the complexity to acquire training parameters and was time- 
consuming. Secondly, backgrounds with trivial information would be 
unfavorable for network training and convergence. 

We proposed a method that removed the blank areas of the brain 
image. After the skull-strip and spatial normalization step in pre- 
processing, the binarized masks of all brains were obtained. The 
maximum value of the brain size across all slices of all individuals was 
extracted, and the region was expanded for 5 voxels in all directions to 
determine the effective area. Then we removed the peripheral back-
ground outside the effective brain area and resampled the image to 160 
× 180 × 160. Then the new volume was segmented into 64 patches 
through the following steps: First, we set the origin of image at the 
superior-posterior cornor of the image. A 3D window with the size of 96 
× 120 × 96 was defined and placed at the origin. Then the window slid 
along each axis (x, y, z) of the image with a step size of 20, and finally 
generated a total of 64 patches as the input for training. Removing the 
marginal trifling information increased the efficiency for network 
training, while the patch which had smaller size compared with original 
brain images reduced the amount of calculation. Fig. 1 showed the patch 
generation procedure. 

2.3. A convolution neural network based on connection-wise attention 
model 

We proposed a 3D connection-wise-attention-model-based densely 
connected convolution neural network (CAM-CNN) to learn the multi- 
level features of brain MR images. 

2.3.1. Dense connections in DenseNet 
He et al. [25] proposed the ResNet (residual network) to combat the 

vanishing gradient problem during training of deep convolutional net-
works. ResNet eases the training of networks that are substantially 
deeper than those used previously and add a skip connection that by-
passes the on-linear transformations with an identity function. An 
advantage of ResNet is that the gradient can flow directly through the 
identity function from an earlier layer to subsequent layers. Fig. 2(a) 
illustrated the layout of the ResNet schematically. To further improve 
the information flow between layers, Huang et al. [26] proposed a 
different connectivity pattern named densely connected convolutional 
networks (DenseNet). Instead of drawing representational power from 
extremely deep or wide architectures, DenseNet exploits the potential of 
the network through feature reuse, yielding condensed models that are 
easy to train and have high parameter efficiency. The feature maps that 
connect the information of all previous layers has been demonstrated to 
increase variation in the input of subsequent layers and improve 

network efficiency. This constitutes a major difference between Dense-
Net and ResNet. Fig. 2(b) illustrated the layout of the resulting DenseNet 
schematically. Consider a single image x0 that is passed through a 
convolutional network. The network comprises L layers, each of which 
implements a non-linear transformation Hl(∙), where l indexes the layer. 
Consequently, the lth layer receives the feature maps of all preceding 
layers, x0, x1, ⋯xl as input. 

xl = Hl[(xl− 1, xl− 2, xl− 3,⋯, x0)] (1) 

Visual attention was applied to provide an effective construction 
approach of this network. The connection-wise attention model pro-
posed by this work allowed the network to place the visual attention on 
the feature maps of each layer (as shown in Fig. 3). Instead of concat-
enating the features of all preceding layers to the subsequent layer as 
done in the DenseNet, the proposed CAM-CNN algorithm introduced a 
model that integrated the feature maps of all previous layers by a 
weighted summation, where the weighting parameters were self-learned 
during network training. This has made the network more simple and 
efficient by paying attention on the most contributory information. The 
CAM-CNN assigned a weighting coefficient W to the ith layer of the 
network as shown in Formula 2, where Wi denoted an attention vector 
consisting of i-1 elements. Formula 3 illustrated the layout of the lth 
layer with connection-wise attention, where Hl (.) was a non-linear 
transformation and xj(1 ≤ j ≤ l − 1) represented feature maps from 
the jth layer. 

Wi =
[
wi− 1,i,wi− 2,i,⋯,w2,i,w1,i

]
(2)  

xl = Hl
(
wl− 1,lxl− 1

)
+wl− 2,lxl− 2⋯+w1,lx1 (3) 

The network consisted of 4 layer types. The first type was the input 
layer which the image patches were fed into the network. The second 
type was convolutional layer which convolved the learned filters with 
the input images and produced feature maps for each filter. The CAM- 

Table 1 
Demographic and cognitive examination scores of all subjects.  

Diagnostic type Number Age Gender (M/F) MMSE 

AD 280 76.13 ± 6.14 132/148 23.54 ± 2.08 
cMCI 162 75.13 ± 5.23 86/76 26.94 ± 1.22 
ncMCI 251 77.61 ± 5.92 115/136 27.54 ± 1.32 
NC 275 76.16 ± 6.29 144/131 29.16 ± 0.82 

AD: Alzheimer’s disease; cMCI: MCI converters; ncMCI: MCI non-converters; NC: 
Normal control. 

Fig. 1. The procedure of image patch generation. (a) Original images with 
large uninformative background. (b) Images removed marginal background. (c) 
Brain patch generation. The defined 3D window with the size of 96 × 120 × 96 
slid from the up-left of the pre-processed image along x, y, z direction, at a step 
of 20. Finally, 64 patches were generated for each subject. 
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CNN was built with 9 convolutional layers, and each two convolutional 
layers were followed by a max pooling layers. The sizes of the convo-
lution filters were 3×3×3, and the filter numbers were set to 35. The 
third type was the pooling layer, where max pooling was used in this 
work. Max pooling reduced the feature map along the spatial dimensions 
by replacing each cube with their maximum value and kept the most 
influential features for distinguishing images. In this work, max pooling 
was applied for each 2×2×2 region, and Tanh was adopted as the 
activation function in these layers due to its good performance for CNNs. 
The fourth type of layer was the fully connected layer which consisted of 
a number of input and output neurons that generated the learned linear 
combination of all neurons from the previous layer and passed through a 
nonlinearity. The inputs and outputs of the fully connected layers were a 
1D vector and not spatially located anymore. The designed model had 
two characteristics: First, the CAM-CNN referred to the ResNet 
connection method that the identity function and the output of Hl were 
integrated by summation which reduced the number of parameters 
during training. Second, the feature maps of the current layer were 
obtained through the maps of all preceding layers. Each layer of the 
network was assigned a self-learned weighting coefficient, allowing the 
CAM-CNN to concentrate on more contributive features. 

2.4. Experiments 

The original MR images were first registered to the standard space 
using affine transformation and resampled to the size of 160 × 180 ×
160. Then 64 brain patches were generated from each subject for 
training and testing, which finally resulted in 61,954 feature patches 
including 17,920 in AD group, 10,368 in cMCI, 16,064 in ncMCI, and 
17,600 in NC group. 

In our experiments, each group was randomly split into training set 
(70% of subjects), validation set (15% of subjects), and testing set (15% 
of subjects). The proposed classification method was implemented with 
the Keras library in Python3.6 based on tensorflow, and then performed 
on a PC with GPU NVIDIA GTX1080 in the environment of 
Ubuntu14.04-x64. The network parameters were randomly initialized at 
the beginning, and stochastic gradient decent (SGD) optimizer was 
adopted with the initial learning rate of 0.001. The momentum was set 
to 0.9, and the batch size was set to 64. To avoid overfitting, the dropout 
as well as L1 and L2 regularization were used in our network. We has 
applied the proposed algorithm to classify (1) mild AD patients versus 
normal controls (AD vs. NC), (2) MCI converters versus normal controls 
(cMCI vs. NC), and (3) MCI converters versus non-converters (cMCI vs. 

Fig. 2. The layout of the ResNet (a) and DenseNet (b). (a) The ResNet builds skip connections to jump over layers. (b) The DenseNet constructs an architecture that 
connects each layer to every subsequent layer. 

Fig. 3. The layout of the proposed CAM-CNN. The attention mechanism was introduced to the dense connections between layers, which allowed the network to place 
attention on the feature maps that were more contributive for classification. 
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ncMCI). 
The proposed algorithm was compared with three classic networks: 

the basic CNN, the ResNet, and the DenseNet. The basic CNN network 
consisted of 9 3D convolutional layers that used a kernel with a size of 
3×3×3, step size of 1×1×1, and channel number of 35. Each two con-
volutional layers were followed by a pooling layer, so there were a total 
of 4 pooling layers, all of which used maximum pooling with a size of 
2×2×2. Two fully connected layers were constructed at the end of the 
network, and the dropout technique was used as a regular term to pre-
vent overfitting and improve the robustness of the model. The ResNet 
introduced four residual modules to the basic CNN, while the DenseNet 
changed the design of information flow on the basis of the ResNet to 
ensure the interconnection between all layers. The general parameter 
settings of the three networks were the same with those of the proposed 
method. 

3. Results 

3.1. Classification results of the proposed method and comparison with 
basic convolutional neural networks 

The proposed method presented good classification performance 
with accuracy of 97.35%, 87.82%, and 78.79% for discriminating mild 
AD, MCI converters (cMCI) and stable MCI subjects (ncMCI) against 
normal controls, respectively. Compared with the basic CNN, ResNet, 
and DenseNet on the same datasets, our method demonstrated higher 
accuracy in all group separation. 

The proposed CAM-CNN method presented better performance than 
the popular networks such as ResNet and DenseNet. For AD vs. NC, the 
three indicators of classification performance including sensitivity 
(SEN), specificity (SPE), and accuracy (ACC) using the basic CNN was 
lower than 90%. ResNet improved the accuracy to 93.43%, which was 
8.36% higher than basic CNN. By strengthening feature propagation and 
reuse, DenseNet led to a raise of the accuracy to 94.96%. The proposed 
CAM-CNN model achieved the highest accuracy of 97.35%. The area 
under curve (AUC) of the four networks were all higher than 90%, where 
AUC of CAM-CNN almost attained 100%. For cMCI vs. NC, the accuracy 
using basic CNN was lower than 80%. DenseNet and CAM-CNN per-
formed well with accuracy of 87.53% and 87.82% respectively, and the 
AUC of the two models have exceeded 90%. For cMCI vs. ncMCI, the 
classification accuracy of the four networks were between 70% and 
80%. The basic CNN produced accuracy of 72.19%, sensitivity of 
72.50% and specificity of 71.86%. The accuracy of ResNet and DenseNet 
were 73.24% and 76.02%. The proposed CAM-CNN method again 
showed the highest accuracy of 78.79% for cMCI vs. ncMCI classifica-
tion, with AUC of 86.79%. The results were summarized in Table 2 and 
Fig. 4. 

3.2. Comparison with other existing methods 

We compared the classification results of our model with those re-
ported in previous studies also using the ADNI database (as shown in 

Table 3). 
First, we compared our proposed model to traditional machine 

learning methods. Wolz et al. [27] and Cho et al. [28] proposed ROI- 
based methods to extract brain features, then used machine learning 
methods such as SVM or linear discriminant analyses (LDA) to perform 
the classification. Wolz et al. [27] obtained the accuracy of 85%, 82%, 
and 69% for a single modality dataset of structural MRI, but none of the 
accuracy was greater than 90%. Similar results were shown in the work 
of Cho et al. [28]. Furthermore, we compared our model to some 
existing deep learning methods. Liu et al. [29] designed an architecture 
which contained stacked auto-encoders (SAE) and a softmax output 
layer, where they showed 87.86% accuracy for AD vs. NC classification 
and 76.92% for cMCI vs. NC. Later they enhanced the algorithm by 
applying a zero-mask strategy for data fusion to extract complementary 
information from images [30]. The algorithm improved the accuracy for 
AD vs. NC classification to 91.4%. Suk et al. [31] proposed a novel 
framework that combined two conceptually different methods of sparse 
regression and deep learning method, and obtained the accuracy of 
91.02%, 73.02%, 74.82% for AD vs. NC, cMCI vs. NC, cMCI vs. ncMCI 
classification. They also introduced PET data along with MRI data and 
constructed a deep network with a restricted boltzmann machine, which 
increased the accuracy to 95.35% and 75.92% for classifying AD vs. NC 
and cMCI vs. ncMCI respectively [32]. Cheng et al. [33] proposed to 
construct multiple deep 3D convolutional neural networks to learn 
various features from local brain images which were combined to make 
the final classification for AD diagnosis. They achieved 86.36% accuracy 
for classifying AD vs. NC. Liu et al. [34] constructed cascaded con-
volutional neural networks to learn the multi-level features of MRI for 
AD classification. The method yielded 92.75% classification accuracy 
for AD vs. NC, and 76.90% for cMCI vs. ncMCI. Basais et al. [35] adopted 
the CNN model on a large amount of samples and obtained the accuracy 
of 99.2%, 87.1%, 75.1% for AD vs. NC, cMCI vs. NC, and cMCI vs. ncMCI 
classification. The proposed CAM-CNN method presented a good clas-
sification performance with accuracy of 97.35%, 87.82%, and 78.79% to 
distinguish AD vs. NC, cMCI vs. NC, and cMCI vs. ncMCI respectively, 
where it demonstrated the highest capacity to differentiate MCI con-
verters from normal controls and MCI non-converters. 

4. Discussion 

Effective and accurate AD diagnosis is critical for early intervention 
and management of the disease. Therefore researchers have devoted 
their efforts to develop computer-aided systems that aim to diagnose AD 
in an early stage. Different with traditional methods based on hand-
crafted features, we proposed a densely connected convolutional 
network with connection-wise attention mechanism (CAM-CNN) that 
facilitated detection and prediction of individuals with AD or MCI using 
structural MR brain scans. 

CNN model has provided a tool for image-assisted diagnosis and 
currently have attracted much attention in disease classification. The 
increasing depth and complexity of the network improved the classifi-
cation performance, but at the same time it brought new problems, such 

Table 2 
Classification results of the proposed network compared with some general networks on AD vs. NC, cMCI vs. NC and cMCI vs. ncMCI.   

AD vs. NC cMCI vs. NC cMCI vs. ncMCI 

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

% % % % % % % % % % % % 

Basic CNN 85.07 82.59 87.56 93.21 79.32 83.14 75.45 85.11 72.19 72.50 71.86 78.29 
ResNet 93.43 94.27 92.59 95.00 82.99 81.39 84.59 86.36 73.24 73.05 73.43 81.80 
DenseNet 94.96 94.50 95.43 96.24 87.53 76.19 88.91 90.81 76.02 73.59 78.44 85.08 
CAM-CNN 97.35 97.10 97.95 99.70 87.82 87.56 88.84 92.85 78.79 75.16 82.42 86.79 

The bold numbers denote the maximum value of each column, that is the highest rate of each index. 
ACC:Accuracy; AD: Alzheimer’s disease; AUC: Area under curve; cMCI: MCI converter; ncMCI: MCI non-converter; NC:Normal control; SEN: Sensitivity; SPE: 
Specificity. 
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as gradient vanishing or explosion. Feature information in basic CNN 
architecture was a one-way and one-time flow, which meant that feature 
maps from different layers did not interact much. In our experiments, 
the basic CNN method presented classification accuracy of 85.07%, 
79.32%, and 72.19% for mild AD, MCI converters and stable MCI sub-
jects versus normal controls, not as good as other networks. The emer-
gence of ResNet was a landmark in the development of deep learning 

methods, which brought in a residual unit that linked the current layer 
to previous layer. The residual unit was introduced to solve the degra-
dation problem. The skip-connection allowed ResNet to become deeper 
and show better performance than basic CNN. The DenseNet has bor-
rowed the idea of ResNet but proposing a brand-new structure. In this 
network, there were direct connections between any of the two layers, 
that is, the input of each layer of the network was the union of the 

Fig. 4. ROC curves of classification by different networks. The proposed network demonstrated higher accuracy and AUC compared with the basic CNN, ResNet, and 
DenseNet models. 
AD: Alzheimer’s disease; AUC: Area under curve; cMCI: MCI converter; ncMCI: MCI non-converter; NC: Normal control; ROC: Receiver Operating Characteristic. 

Table 3 
Classification results of the proposed method andsome published methods on AD vs. NC, cMCI vs. NC, and cMCI vs. ncMCI.  

Algorithms Data modality Number of samples AD vs NC cMCI vs NC cMCI vs ncMCI 

SEN SPE ACC SEN SPE ACC SEN SPE ACC 

(%) (%) (%) (%) (%) (%) (%) (%) (%) 

Ours MRI AD-280, cMCI-162, ncMCI-251, NC-275 97.10 97.95 97.35 87.56 88.84 87.82 75.16 82.42 78.79 
Wolz et al., 2011 MRI AD-198, cMCI-238, ncMCI-167, NC-231 89 93 85 84 86 82 68 67 69 
Cho et al., 2012 MRI AD-128, cMCI-72, ncMCI-131, NC-160 82 93 – 66 89 – 63 76 – 
Liu et al., 2014 MRI + PET AD-65, cMCI-67, ncMCI-102, NC-77 88.57 87.22 87.86 74.29 78.13 76.92 – – – 
Suk et al., 2014 MRI AD-93, cMCI-76, ncMCI-128, NC-101 91.54 94.56 92.38 99.58 53.79 84.24 36.70 90.98 72.42 
Liu et al., 2015 MRI AD-180, cMCI-160, ncMCI-214, NC-204 92.32 90.42 91.40 60.00 92.32 82.10 – – – 
Suk et al., 2017 MRI AD-186, cMCI-167, ncMCI-226, NC-226 92.72 89.94 91.02 77.6 68.22 73.02 70.93 78.82 74.82 
Cheng et al., 2017 MRI AD-199, cMCI-0, ncMCI-0, NC-229 85.93 87.15 86.36 – – – – – – 
Liu et al., 2018 MRI AD-93, cMCI-76, ncMCI-128, NC-100 93.48 91.30 92.75 – – – 42.11 82.43 76.90 
Basaia et al., 2019 MRI AD-294, cMCI-253, ncMCI-510, NC-352 98.9 99.5 99.2 87.8 86.5 87.1 74.8 75.3 75.1 

The bold numbers denote the maximum value of each column, that is the highest rate of each index. 
ACC: Accuracy; AD: Alzheimer’s disease; cMCI: MCI converter; ncMCI: MCI non-converter; NC:Normal control; SEN: Sensitivity; SPE: Specificity. 
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outputs of all previous layers, and the feature map generated by the 
current layer would also be directly passed to all the following layers as 
input. Such an architecture has alleviated the problem of gradient 
vanishing, encouraged feature reuse, and greatly reduced the amount of 
parameters. The classification accuracy of DenseNet thus has been 
improved to 94.96%, 87.53%, and 76.02% respectively for classification 
of AD vs. NC, cMCI vs. NC, and cMCI vs. ncMCI. 

This paper proposed an improved densely connected network with 
connection-wise attention mechanism named CAM-CNN. Existing 
attention mechanisms are mainly divided into two categories in neural 
networks, the first is the spatial attention mechanism, and the second is 
the channel attention mechanism. Spatial attention is to train to find 
areas that need attention for image information [36,37]. Channel 
attention allows the network to focus on different filters, thereby 
improving the accuracy of network classification [38,39]. Different from 
the above two attention models, this paper for the first time proposed a 
new attention mechanism that placed the focus point on the feature 
maps between different network layers. We know that the DenseNet 
conducts feature fusion of different layers. However, the information 
extracted from all preceding layers and their contribution for classifi-
cation performance may be different. It could cause information 
redundancy and increase the time and amount of calculation for 
network training if all information were equally considered in the 
model. Therefore, the proposed algorithm introduced a dense connec-
tion attention mechanism to the improved network. The dense 
connection attention module assigned a weight coefficient to each layer 
in the network, which was a weighting parameter obtained through 
network training. By applying different weight parameters, the network 
automatically adjusted the contribution of different information of 
different layers to increase the efficiency for classification. Thus the 
proposed method has demonstrated higher classification accuracy than 
ResNet and DenseNet in the experiments. 

Discriminating MCI converters who were in the high risk of devel-
oping AD is of particular importance for clinical control and manage-
ment of the disease. However, the image characteristics of MCI 
converters compared to those of healthy elderly or MCI non-converters 
are less notable. With the proposed method, we obtained the accuracy of 
78.79% for cMCI vs. ncMCI, 87.82% for cMCI vs. NC which have shown 
improvement on the performance compared with some popular network 
models and indicated the potential of CAM-CNN model to detect sub-
jects in prodromal dementia. 

There were limitations of the proposed method. Although we have 
reduced the size of input data by generating MR patches instead of using 
the whole brain image, it was still computational expensive to train 
parameters. Moreover, in the training process, we adjusted the param-
eters of the deep CNN model, including the number of layers, the size 
and number of kernels in each layer, nevertheless network convergence 
was still challenging. Reducing the size of patch to 1/3 of that used in 
this work help solve the non-convergence problem as well that the 
training time was shortened. In practice, network parameters and set-
tings should be considered for a trade off to achieve the best classifica-
tion efficiency and effect. 

5. Conclusions 

In this study, we developed a network to diagnose and predict AD 
conversion based on structural MR data, by combining CNN with an 
attention model. We used the densely connected neural network to 
extract multi-scale features from the pre-processed data, and a 
connection-wise attention mechanism to combine connections between 
different features from different layers to hierarchically transform the 
MR data into more compact high-level feature maps. We achieved the 
classification accuracy of 97.35%, 87.82% and 78.79% for distinguish-
ing AD vs. NC, cMCI vs. NC, and cMCI vs. ncMCI. Compared with some 
general neural networks and previous methods on the same dataset, the 
proposed algorithm has demonstrated top-ranked classification 

accuracy rates for detection of AD and prediction of MCI conversion. 
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